Significant enhancement of scintillation performance by inducing oxygen vacancies in alkali metal ion (A(+) = Li+, Na+, K+)-incorporated (Lu, Sc)BO3:Ce
-
作者
Yang, Yun-Ling; Chen, Jia-Xuan; Guo, Fan; Huang, Meng; Liang, Shan-Shan; Li, Qian-Li; Hu, Jian-Feng; Zhao, Jing-Tai; Gao, Xing-Yu; Fu, Ya-Nan; Lin, Hui; Cheng, Shuai; Zhang, Zhi-Jun
-
刊物名称
DALTON TRANSACTIONS
-
年、卷、文献号
2022, 51, 1477-9226
-
关键词
Yang, Yun-Ling; Chen, Jia-Xuan; Guo, Fan; Huang, Meng; Liang, Shan-Shan; Li, Qian-Li; Hu, Jian-Feng; Zhao, Jing-Tai; Gao, Xing-Yu; Fu, Ya-Nan; Lin, Hui; Cheng, Shuai; Zhang, Zhi-Jun
-
摘要
The incorporation of Sc3+ can stabilize calcite-phase LuBO3:Ce3+ to grow large-sized single crystals but leads to the significant degradation of scintillation performance. In the present work, alkali metal ion (A(+) = Li+, Na+, K+)-incorporated (Lu, A, Sc)BO3:Ce was rapidly synthesized in batches via a high-throughput sol-gel method. The aliovalent substitution of Lu3+ with A(+) is balanced by the generation of oxygen vacancies by forming [A(Lu)(center dot center dot) + V-o(xx)] complexes. Thanks to the increased oxygen vacancies, the luminescence and XEL intensity of (Lu, Li, Sc)BO3:Ce are significantly enhanced by 2.2 times and 1.9 times, respectively. Further, the incorporation of A(+) is attributed to the improved transition efficiency of charge carriers. The prepared scintillation screen fabricated with LASBO:Ce and PMMA shows that the spatial resolution can reach 8.6 lp mm(-1), indicating its potential application in efficient and low-cost non-destructive X-ray detection. This work is of great significance in improving the luminescence and scintillation performance of (Lu, Sc)BO3:Ce single crystals and thin films and their application in the scintillation field.