摘要
Silicon carbide (SiC) was used as a support for SSZ-13 zeolite in an attempt to improve the high-temperature stability and activity of Cu/SSZ-13 in the selective catalytic reduction (SCR) of NO with NH3. SSZ-13 was grown via a hydrothermal method using the silicon and silica contained in SiC as the source of silicon, which led to the formation of a chemically bonded SSZ-13 layer on SiC. Characterization using X-ray diffraction, scanning electron microscopy, and N-2 adsorption-desorption isotherms revealed that the alkali content strongly affected the purity of zeolite and the crystallization time affected the coverage and crystallinity of the zeolite layer. Upon ion exchange, the resulting Cu/SSZ-13@SiC catalyst exhibited enhanced activity in NH3-SCR in the high-temperature region compared with the unsupported Cu/SSZ-13. Thus, the application temperature was extended with the use of SiC as the support. (C) 2018, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.