摘要
The catalytic valorization of microalgae, a sustainable feedstock to alleviate dependence on fossil fuel and offset greenhouse gases emissions, is of great significance for production of biofuels and value-added chemicals from aquatic plants. Here, an interesting catalytic process is reported to convert microalgae (Chlorococcum sp.) into 1,2-propanediol (1,2-PDO) and ethylene glycol (EG) in water over nickel-based catalysts. The influences of reaction temperature, initial H-2 pressure and reaction time on the product distribution were systematically investigated by using a batch reactor. Under optimal reaction conditions (at 250 degrees C for 3 h with 6.0 MPa of H-2 pressure), microalgae were directly and efficiently converted over a Ni-MgO-ZnO catalyst and the total yield of polyols was up to 41.5%. The excellent catalytic activity was attributed to the smaller size and better dispersion of Ni particles on the MgO-ZnO supporter based on the characterization results as well as its tolerance to nitrogen-containing compounds. Besides, the reaction pathway was proposed based on the formation of reaction intermediates and the results of model compound conversion.