高研院主页    |    进入邮箱

孙楠楠

孙楠楠.jpg
性 别
职 务
职 称
电子邮件
通讯地址
邮政编码


研究员
sunnn@sari.ac.cn
上海市浦东新区海科路99号9A楼403室
200120
孙楠楠,博士,男,中国科学院上海高等研究院研究员, 博士生导师,中国科学院青年创新促进会成员,入选上海市青年拔尖人才,中国可持续发展研究会碳中和专业委员会委员。2011年于中国科学院山西煤炭化学研究所获得博士学位,同年留所工作,任助理研究员;2012年至2014年,于英国诺丁汉大学进行博士后研究;2014年加入中国科学院上海高等研究院,历任副研究员、研究员。孙楠楠研究员的主要研究领域为CCUS关键技术和战略,先后承担了中国科学院战略性先导科技专项、上海市科委重大专项、内蒙科技厅重大专项、上海市自然科学基金、山西省自然科学基金等项目。作为主要作者参与编写《中国二氧化碳利用技术评估报告》和《中国碳捕集利用与封存技术发展路线图(2019版)》,为国家科技部《中国碳中和技术发展路线图》和上海市《上海市科技支撑碳达峰碳中和行动方案》编写组主要专家。在Joule、Energy Environ. Sci.、J. Mater. Chem. A、ACS Appl. Mater. Inter., ChemSusChem、Carbon等国内外重要学术期刊上发表论文30余篇,授权国家发明专利5项。 
1. 多维度、多尺度碳中和战略和技术评估
2. 二氧化碳捕集利用与封存关键技术和应用
3. 甲烷转化新途径研究
 
1.上海市科委碳中和重大专项,“二氧化碳高效捕集-利用一体化技术研究与示范”,项目负责人,250万元,2021.08~2024.07。
2.内蒙古自治区重大专项,“化工产业二氧化碳减排及其高值化利用研发与示范”,项目负责人,990万元,2021.08~2024.07。
3.中科院建制化研究项目,“面向二氧化碳的光子科学建制化研究平台”,课题共同负责人,1500万元,2021.10~2026.10。
4.上海市科委定向委托项目,“上海市碳达峰碳中和技术发展路线图研究”,课题负责人,200万元,2021.08~2023.07。
5.国家能源集团、宝武集团、河钢集团、濮阳市发改委等横向委托项目,课题负责人。
 
1. 文章:
[1] J. L. Shi, L. N. Zhang, Q. Shen, N. N. Sun and W. Wei. Surfactant-Free Synthesis of Ag Nanoparticles Loaded ZIF-8 as a Catalytic Filter Device for Continuous Reduction of 4-Nitrophenol[J]. Catalysis Letters, 2022.
[2] Z. Zhang, S. Lu, G. Shen, Y. Zhao, T. Zhu, Q. Gao, N. Sun and W. Wei. Controllable and rapid synthesis of nitrogen-doped ordered mesoporous carbon single crystals for CO2 capture[J]. Journal of Co2 Utilization, 2022, 56.
[3] L. Y. Zhang, N. N. Sun, M. Q. Wang, T. Wu, W. Wei and C. H. Pang. The integration of hydrogenation and carbon capture utilisation and storage technology: A potential low-carbon approach to chemical synthesis in China[J]. International Journal of Energy Research, 2021, 45(14): 19789-19818.
[4] M. K. Li, L. N. Zhang, Z. Z. Zhang, J. L. Shi, Y. F. Liu, J. S. Chen, N. N. Sun and W. Wei. SiO2-Coated Ag Nanoparticles for Conversion of Terminal Alkynes to Propolic Acids via CO2 Insertion[J]. Acs Applied Nano Materials, 2021, 4(7): 7107-7115.
[5] Z. Z. Zhang, N. N. Sun and W. Wei. Facile and controllable synthesis of ordered mesoporous carbons with tunable single-crystal morphology for CO2 capture[J]. Carbon, 2020, 161: 629-638.
[6] Q. Shen, X. H. Song, F. Mao, N. N. Sun, X. Wen and W. Wei. Carbon reduction potential and cost evaluation of different mitigation approaches in China's coal to olefin Industry[J]. Journal of Environmental Sciences. 2020, 90(4): 352-363.
[7] S. C. Cao, H. Y. Zhao, D. Hu, J. A. Wang, M. K. Li, Z. J. Zhou, Q. Shen, N. N. Sun and W. Wei. Preparation of potassium intercalated carbons by in-situ activation and speciation for CO2 capture from flue gas[J]. Journal of Co2 Utilization. 2020, 35: 59-66.
[8] C. Ma, X. J. Tan, H. J. Zhang, Q. Shen, N. N. Sun and W. Wei. Direct conversion of methane to methanol over Cu exchanged mordenite: Effect of counter ions[J]. Chinese Chemical Letters. 2020, 31(1): 235-238.
[9] Z. J. Zhou, N. N. Sun, B. D. Wang, Z. H. Han, S. C. Cao, D. Hu, T. Y. Zhu, Q. Shen and W. Wei. 2D-Layered Ni-MgO-Al2O3 Nanosheets for Integrated Capture and Methanation of CO2[J]. Chemsuschem. 2020, 13(2): 360-368.
[10] X. Song, Y. Guo, J. Zhang, N. Sun, G. Shen, X. Chang, W. Yu, Z. Tang, W. Chen, W. Wei, L. Wang, J. Zhou, X. Li, X. Li, J. Zhou, Z. Xue. Fracturing with Carbon Dioxide: From Microscopic Mechanism to Reservoir Application[J]. Joule, 2019, 10.1016/j.joule.2019.05.004.
[11] H. Y. Zhao, L. Shi, Z. Z. Zhang, X. N. Luo, L. N. Zhang, Q. Shen, S. G. Li, H. J. Zhang, N. N. Sun, W. Wei, Y. H. Sun. Potassium Tethered Carbons with Unparalleled Adsorption Capacity and Selectivity for Low-Cost Carbon Dioxide Capture from Flue Gas[J]. Acs Appl Mater Inter, 2018, 10(4): 3495-3505.
[12] C. Wang, Y. Qiu, X. Zhang, Y. Zhang, N. Sun, Y. Zhao. Geometric design of a Ni@silica nano-capsule catalyst with superb methane dry reforming stability: enhanced confinement effect over the nickel site anchoring inside a capsule shell with an appropriate inner cavity[J]. Catal Sci Technol, 2018, 8(19): 4877-4890.
[13] J. L. Shi, G. F. Shen, H. Y. Zhao, N. N. Sun, X. H. Song, Y. T. Guo, W. Wei, Y. H. Sun. Porosity at the interface of organic matter and mineral components contribute significantly to gas adsorption on shales[J]. Journal of Co2 Utilization, 2018, 28: 73-82.
[14] Z. Z. Zhang, H. Y. Zhao, L. N. Zhang, N. N. Sun, W. Wei, Y. H. Sun. One-Pot Solvent-Free Strategy for the Facile and Fast Synthesis of Highly Enriched Nitrogen-Doped Carbons[J]. J Phys Chem C, 2017, 121(21): 11524-11533.
[15] C. Wang, N. Sun, N. Zhao, W. Wei, Y. Zhao. Template-free preparation of bimetallic mesoporous Ni-Co-CaO-ZrO2 catalysts and their synergetic effect in dry reforming of methane[J]. Catalysis Today, 2017, 281: 268-275.
[16] Q. Shen, L. Zhang, N. Sun, H. Wang, L. Zhong, C. He, W. Wei, Y. Sun. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation[J]. Chem Eng J, 2017, 322: 46-55.
[17] X. Huang, C. Ji, C. Wang, F. Xiao, N. Zhao, N. Sun, W. Wei, Y. Sun. Ordered mesoporous CoO-NiO-Al2O3 bimetallic catalysts with dual confinement effects for CO2 reforming of CH4[J]. Catalysis Today, 2017, 281: 241-249.
[18] C. Zhu, Z. Zhang, B. Wang, Y. Chen, H. Wang, X. Chen, H. Zhang, N. Sun, W. Wei, Y. Sun. Synthesis of HKUST-1#MCF compositing materials for CO2 adsorption[J]. Microporous and Mesoporous Materials, 2016, 226: 476-481.
[19] C. Wang, N. Sun, W. Wei, Y. Zhao. Carbon intermediates during CO2 reforming of methane over NiCaOZrO2 catalysts: A temperature-programmed surface reaction study[J]. Int J Hydrogen Energ, 2016, 41(42): 19014-19024.
[20] B. Wang, C. Zhu, Z. Zhang, W. Zhang, X. Chen, N. Sun, W. Wei, Y. Sun, H. Ji. Facile, low-cost, and sustainable preparation of hierarchical porous carbons from ion exchange resin: An improved potassium activation strategy[J]. Fuel, 2016, 179: 274-280.
[21] B. Wang, Z. Zhang, C. Zhu, L. Zhang, N. Sun, W. Wei, Y. Sun. Enhancing low pressure CO2 adsorption of solvent-free derived mesoporous carbon by highly dispersed potassium species[J]. Rsc Adv, 2016, 6(40): 33580-33588.
[22] X. Huang, G. Xue, C. Wang, N. Zhao, N. Sun, W. Wei, Y. Sun. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane: effect of Ni embedding and Y2O3 promotion[J]. Catal Sci Technol, 2016, 6(2): 449-459.
[23] Nannan Sun, Chenggong Sun, et al., Synthesis, characterization and evaluation of activated spherical carbon materials for CO2 capture, Fuel, 113 (2013) 854-862.
[24] Nannan Sun, Xia Wen, et al., Catalytic performance and characterization of Ni-CaO-ZrO2 catalysts for dry reforming of methane, Applied Surface Science, 257 (2011) 9169-9176.
[25] Nannan Sun, Xia Wen, et al., Effect of pore structure on Ni catalyst for CO2 reforming of CH4, Energy & Environmental Science, 3 (2010) 366-369.
[26] Changzhen Wang, Nannan Sun, et al., Bi-functional Mechanism of CH4 Dry Reforming over a Ni-CaO-ZrO2 Catalyst: Further Evidence via Active Sites Identification and Kinetic Studies, Catalysis Science & Technology, 3 (2013) 2435-2443.
[27] Xin Huang, Nannan Sun, et al., Effect of pore geometries on the catalytic properties of NiO-Al2O3 catalysts in CO2 reforming of methane, RSC Advances, 5 (2015) 21090-21098.
[28] Changzhen Wang, Nannan Sun, et al., Coking and deactivation of a mesoporousNi-CaO-ZrO2 catalyst in dry reforming of methane: A study under different feeding compositions, Fuel, 143 (2014)527-535.
[29] Changzhen Wang, Nannan Sun,et al., The properties and their influence on catalyst deactivation of individual carbon residuals over Ni-CaO-ZrO2 catalysts in CH4 dry reforming, ChemCatChem, 6 (2014) 640-648.
[30] Hongyu Zhao, Lei Shi, et al., Potassium Tethered Carbons with Unparalleled Adsorption Capacity and Selectivity for Low-Cost Carbon Dioxide Capture from Flue Gas, ACS Appl. Mater. Interfaces, 10 (2018) 3495.
 
2.论述章节:
[1] 《中国二氧化碳利用技术评估报告》,2011,科学出版社
[2] 《中国碳捕集利用与封存技术发展路线图(2019版)》,2019,科学出版社
[3] 《中国碳捕集利用与封存技术评估报告》,2022,科学出版社
 
3.专利:
[1] 一种金属有机骨架-介孔氧化硅复合材料的制备方法及其应用
[2] 一种活性炭材料的制备方法及其应用
[3] 一种超临界二氧化碳增稠剂及其制备与应用
[4] 一种多级孔氮杂碳材料及其制备方法
[5] 一种碳基二氧化碳吸附剂的制备方法及应用
[6] 一种高性能碳基二氧化碳吸吸附材料的制备方法及其应用
021-88886666